The tree ideal of full-splitting Miller trees

Aleksander Cieślak

Wrocław University of Technology

February 3, 2022

Aleksander Cieślak The tree ideal of full-splitting Miller trees

・ 同 ト ・ ヨ ト ・ ヨ ト

DQ P

If \mathbb{P} is some collection of trees, like Sacks, Miller, Laver, etc. the tree ideal p_0 consists of $X \subseteq 2^{\omega}$ or ω^{ω} , such that

 $\forall p \in \mathbb{P} \exists q \leq p \ [q] \cap X = \emptyset$

If \mathbb{P} is some collection of trees, like Sacks, Miller, Laver, etc. the tree ideal p_0 consists of $X \subseteq 2^{\omega}$ or ω^{ω} , such that

$$\forall p \in \mathbb{P} \exists q \leq p \ [q] \cap X = \emptyset$$

Well investigated examples:

向下 イヨト イヨト

If \mathbb{P} is some collection of trees, like Sacks, Miller, Laver, etc. the tree ideal p_0 consists of $X \subseteq 2^{\omega}$ or ω^{ω} , such that

$$\forall p \in \mathbb{P} \exists q \leq p \ [q] \cap X = \emptyset$$

Well investigated examples:

• s₀ - Marczewski ideal

向下 イヨト イヨト

If \mathbb{P} is some collection of trees, like Sacks, Miller, Laver, etc. the tree ideal p_0 consists of $X \subseteq 2^{\omega}$ or ω^{ω} , such that

$$\forall p \in \mathbb{P} \exists q \leq p \ [q] \cap X = \emptyset$$

Well investigated examples:

- s₀ Marczewski ideal
- m₀, l₀ Miller and Laver ideal
- v₀ Silver, Mycielski ideal

向下 イヨト イヨト

Definition

A tree $p \subseteq \omega^{<\omega}$ is full-Miller if every $\sigma \in p$ has an extension $\tau \in p$, $\sigma \subseteq \tau$ which splits fully i.e. $\forall n \in \omega \ \tau^{\frown} n \in p$

with fm_0 as corresponding tree ideal

・ 同 ト ・ ヨ ト ・ ヨ ト

MQ (P

Borel part of fm₀

For classical tree types the following perfect set style theorem holds

Theorem For every $A \in \Sigma_1^1$ we have: $\exists p \in \mathbb{P} \ [p] \subseteq A \text{ or } A \in \mathcal{I}_{\mathbb{P}}$

Borel part of fm₀

Theorem

For classical tree types the following perfect set style theorem holds

For every $A \in \Sigma_1^1$ we have:

 $\exists p \in \mathbb{P} \ [p] \subseteq A \text{ or } A \in \mathcal{I}_{\mathbb{P}}$

$$\begin{split} \mathcal{I}_{\mathbb{S}a} &= \text{countable sets} \\ \mathcal{I}_{\mathbb{M}i} &= \mathcal{K}_{\sigma} \text{ sets} \\ \mathcal{I}_{\mathbb{L}a} &= \text{not strongly dominating sets} \end{split}$$

Borel part of fm₀

For classical tree types the following perfect set style theorem holds

Theorem

For every $A \in \Sigma_1^1$ we have:

 $\exists p \in \mathbb{P} \ [p] \subseteq A \text{ or } A \in \mathcal{I}_{\mathbb{P}}$

$$\begin{split} \mathcal{I}_{\mathbb{S}a} &= \text{countable sets} \\ \mathcal{I}_{\mathbb{M}i} &= \mathcal{K}_{\sigma} \text{ sets} \\ \mathcal{I}_{\mathbb{L}a} &= \text{not strongly dominating sets} \end{split}$$

Theorem (Newelski, Rosłanowski)

 $\mathcal{I}_{\mathbb{FM}}$ is σ -ideal generated by sets of form:

 $D_{\phi} = \{x \in \omega^{\omega} : \forall^{\infty} n \ x(n) \neq \phi(x|_{n}) \} \text{ with } \phi : \omega^{<\omega} \to \omega$

イロト イヨト イヨト

The following inequalities hold

- $add(fm_0) \leq add(\mathcal{M})$
- $cov(fm_0) \leq cov(\mathcal{M})$

・ 戸 ト ・ 三 ト ・ 三 ト

nar

ŀ

The following inequalities hold

- $add(fm_0) \leq add(\mathcal{M})$
- $cov(fm_0) \leq cov(\mathcal{M})$

Fix enumeration $2^{<\omega} = \{\sigma_n : n < \omega\}$ and define function $\phi : \omega^{\omega} \to 2^{\omega}$ for $x = < x_n : n < \omega >$ to be:

$$\phi(x) = \sigma_{x_0} \ \widehat{}_{x_1} \ \widehat{}_{x_2} \ \widehat{}_{\dots}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The following inequalities hold

- $add(fm_0) \leq add(\mathcal{M})$
- $cov(fm_0) \leq cov(\mathcal{M})$

Fix enumeration $2^{<\omega} = \{\sigma_n : n < \omega\}$ and define function $\phi : \omega^{\omega} \to 2^{\omega}$ for $x = \langle x_n : n < \omega \rangle$ to be:

$$\phi(x) = \sigma_{x_0} \circ \sigma_{x_1} \circ \sigma_{x_2} \circ \dots$$

Next, we define $\Phi: \mathcal{M} \to fm_0$, for $M \in \mathcal{M}$ to be

$$\Phi(M) = \{x \in \omega^{\omega} : \phi(x) \in M\}$$

Theorem (Brendle, Khomskii, Wohofsky)

The Incompatibility Shrinking property for \mathbb{P} implies $cof(p_0) > \mathfrak{c}$

Theorem (Brendle, Khomskii, Wohofsky)

The Incompatibility Shrinking property for \mathbb{P} implies $cof(p_0) > \mathfrak{c}$

Incompatibility Shrinking property for \mathbb{P} :

$$\forall p \in \mathbb{P} \ \forall \{q_{\alpha} : \alpha < \kappa\} \subseteq \mathbb{P} \text{ with } \kappa < \mathfrak{c}$$

(if $\forall \alpha < \kappa \ p \perp p_{\alpha} \text{ then } \exists q \leq p \ \forall \alpha < \kappa \ [q] \cap [p_{\alpha}] = \emptyset$)

Theorem (Brendle, Khomskii, Wohofsky)

The Incompatibility Shrinking property for \mathbb{P} implies $cof(p_0) > \mathfrak{c}$

Incompatibility Shrinking property for \mathbb{P} :

$$\forall p \in \mathbb{P} \ \forall \{q_{\alpha} : \alpha < \kappa\} \subseteq \mathbb{P} \text{ with } \kappa < \mathfrak{c}$$

(if $\forall \alpha < \kappa \ p \perp p_{\alpha} \text{ then } \exists q \leq p \ \forall \alpha < \kappa \ [q] \cap [p_{\alpha}] = \emptyset$)

Theorem

ISP for \mathbb{FM} holds under $cov(\mathcal{M}) = \mathfrak{c}$.

(4月) キョン キョン

ISP for \mathbb{FM} holds under $cov(\mathcal{M}) = \mathfrak{c}$.

ヘロト ヘロト ヘビト ヘビト

E

990

ISP for $\mathbb{F}\mathbb{M}$

Theorem

ISP for \mathbb{FM} holds under $cov(\mathcal{M}) = \mathfrak{c}$.

Define partial ordering

$$P = \{F \subseteq p : F \text{ is finite tree}\}$$

P is countable so recall that $cov(\mathcal{M})$ is equal to the smallest number of dense subsets of any countable poset for which there is no filter intersecting them all.

イロト イポト イヨト イヨト

ISP for \mathbb{FM}

Theorem

ISP for \mathbb{FM} holds under $cov(\mathcal{M}) = \mathfrak{c}$.

Define partial ordering

$$P = \{F \subseteq p : F \text{ is finite tree}\}$$

P is countable so recall that $cov(\mathcal{M})$ is equal to the smallest number of dense subsets of any countable poset for which there is no filter intersecting them all.

For each $\alpha < \kappa$ we have $[p] \cap [p_{\alpha}] \subseteq D_{\phi_{\alpha}}$ and we define dense set

$$A_{\alpha} = \{F \in P : \forall \sigma \in ter(F)\} \ \sigma(|\sigma| - 1) = \phi_{\alpha}(\sigma|_{n})\}$$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

ISP for $\mathbb{F}\mathbb{M}$

Theorem

ISP for \mathbb{FM} holds under $cov(\mathcal{M}) = \mathfrak{c}$.

Define partial ordering

$$P = \{F \subseteq p : F \text{ is finite tree}\}$$

P is countable so recall that $cov(\mathcal{M})$ is equal to the smallest number of dense subsets of any countable poset for which there is no filter intersecting them all.

For each $\alpha < \kappa$ we have $[p] \cap [p_{\alpha}] \subseteq D_{\phi_{\alpha}}$ and we define dense set

$$A_{\alpha} = \{F \in P : \forall \sigma \in ter(F)\} \ \sigma(|\sigma| - 1) = \phi_{\alpha}(\sigma|_{n})\}$$

As $\kappa < cov(\mathcal{M})$ there exists filter $H \subseteq P$ which hits all of A_{α} 's. It follows that if we define $q = \bigcup H$ we are guarantied that $q \leq p$ is full-splitting Miller tree and $[q] \cap D_{\phi_{\alpha}} = \emptyset$ for each $\alpha < \kappa$

ロト (得) (ヨト (ヨト)

Э

The following inequalities take place:

Aleksander Cieślak The tree ideal of full-splitting Miller trees

イロト イヨト イヨト

Э

DQC

The following inequalities take place:

• $add(fm_0) < cov(fm_0)$ holds in \mathbb{FM} -model

nar

Э

The following inequalities take place:

- $add(fm_0) < cov(fm_0)$ holds in \mathbb{FM} -model
- 2 $cov(fm_0) < cov(\mathcal{M})$ holds in Cohen model

The following inequalities take place:

- $add(fm_0) < cov(fm_0)$ holds in \mathbb{FM} -model
- 2 $cov(fm_0) < cov(\mathcal{M})$ holds in Cohen model
- $\omega_1 < add(fm_0)$ holds in $\mathbb{A}(\mathbb{FM})$ -model

The following inequalities take place:

- $add(fm_0) < cov(fm_0)$ holds in \mathbb{FM} -model <
- 2 $cov(fm_0) < cov(\mathcal{M})$ holds in Cohen model
- $\omega_1 < add(fm_0)$ holds in $\mathbb{A}(\mathbb{FM})$ -model

The following inequalities take place:

- $add(fm_0) < cov(fm_0)$ holds in $\mathbb{F}M$ -model
- 2 $cov(fm_0) < cov(\mathcal{M})$ holds in Cohen model < --

• $\omega_1 < add(fm_0)$ holds in $\mathbb{A}(\mathbb{FM})$ -model

The following inequalities take place:

- $add(fm_0) < cov(fm_0)$ holds in $\mathbb{F}M$ -model
- 2 $cov(fm_0) < cov(\mathcal{M})$ holds in Cohen model < ---

• $\omega_1 < add(fm_0)$ holds in $\mathbb{A}(\mathbb{FM})$ -model

Given any $\{p_n : n \in \omega\} \subseteq \mathbb{FM}$ and any $c \Vdash (q \in \mathbb{FM}, x \in \omega^{\omega})$ such that $\forall n \in \omega \ c \Vdash (q \text{ and } p_n \text{ are incompatible})$ we can find $p \in \mathbb{FM}$ incompatible with each p_n and such that $c \Vdash (q \text{ is compatible with } p)$ and $c \Vdash x \notin [p]$.

The following inequalities take place:

- $add(fm_0) < cov(fm_0)$ holds in $\mathbb{F}M$ -model
- 2 $cov(fm_0) < cov(\mathcal{M})$ holds in Cohen model

• $\omega_1 < add(fm_0)$ holds in $\mathbb{A}(\mathbb{FM})$ -model < ----

Define full-Miller amoeba $\mathbb{A}(\mathbb{FM})$ as set of pairs (F, p) where $p \in \mathbb{FM}$ and $F \subseteq p$ is finite tree. Forcing $\mathbb{A}(\mathbb{FM})$ adds full-Miller tree each branch of is full-Miller generic real.

Consistency results

Thank you

ヘロト 人間 ト 人臣 ト 人臣 ト

E

990